#ifndef __DEPTH_OF_FIELD__ #define __DEPTH_OF_FIELD__ #if SHADER_TARGET >= 50 // Use separate texture/sampler objects on Shader Model 5.0 #define SEPARATE_TEXTURE_SAMPLER #define DOF_DECL_TEX2D(tex) Texture2D tex; SamplerState sampler##tex #define DOF_TEX2D(tex, coord) tex.Sample(sampler##tex, coord) #else #define DOF_DECL_TEX2D(tex) sampler2D tex #define DOF_TEX2D(tex, coord) tex2D(tex, coord) #endif #include "Common.cginc" #include "DiskKernels.cginc" DOF_DECL_TEX2D(_CameraDepthTexture); DOF_DECL_TEX2D(_CameraMotionVectorsTexture); DOF_DECL_TEX2D(_CoCTex); // Camera parameters float _Distance; float _LensCoeff; // f^2 / (N * (S1 - f) * film_width * 2) float _MaxCoC; float _RcpMaxCoC; float _RcpAspect; half3 _TaaParams; // Jitter.x, Jitter.y, Blending struct VaryingsDOF { float4 pos : SV_POSITION; half2 uv : TEXCOORD0; half2 uvAlt : TEXCOORD1; }; // Common vertex shader with single pass stereo rendering support VaryingsDOF VertDOF(AttributesDefault v) { half2 uvAlt = v.texcoord; #if UNITY_UV_STARTS_AT_TOP if (_MainTex_TexelSize.y < 0.0) uvAlt.y = 1.0 - uvAlt.y; #endif VaryingsDOF o; o.pos = UnityObjectToClipPos(v.vertex); #if defined(UNITY_SINGLE_PASS_STEREO) o.uv = UnityStereoScreenSpaceUVAdjust(v.texcoord, _MainTex_ST); o.uvAlt = UnityStereoScreenSpaceUVAdjust(uvAlt, _MainTex_ST); #else o.uv = v.texcoord; o.uvAlt = uvAlt; #endif return o; } // CoC calculation half4 FragCoC(VaryingsDOF i) : SV_Target { float depth = LinearEyeDepth(DOF_TEX2D(_CameraDepthTexture, i.uv)); half coc = (depth - _Distance) * _LensCoeff / max(depth, 1e-5); return saturate(coc * 0.5 * _RcpMaxCoC + 0.5); } // Temporal filter half4 FragTempFilter(VaryingsDOF i) : SV_Target { float3 uvOffs = _MainTex_TexelSize.xyy * float3(1, 1, 0); #if defined(SEPARATE_TEXTURE_SAMPLER) half4 cocTL = _CoCTex.GatherRed(sampler_CoCTex, i.uv - uvOffs.xy * 0.5); // top-left half4 cocBR = _CoCTex.GatherRed(sampler_CoCTex, i.uv + uvOffs.xy * 0.5); // bottom-right half coc1 = cocTL.x; // top half coc2 = cocTL.z; // left half coc3 = cocBR.x; // bottom half coc4 = cocBR.z; // right #else half coc1 = DOF_TEX2D(_CoCTex, i.uv - uvOffs.xz).r; // top half coc2 = DOF_TEX2D(_CoCTex, i.uv - uvOffs.zy).r; // left half coc3 = DOF_TEX2D(_CoCTex, i.uv + uvOffs.zy).r; // bottom half coc4 = DOF_TEX2D(_CoCTex, i.uv + uvOffs.xz).r; // right #endif // Dejittered center sample. half coc0 = DOF_TEX2D(_CoCTex, i.uv - _TaaParams.xy).r; // CoC dilation: determine the closest point in the four neighbors. float3 closest = float3(0, 0, coc0); closest = coc1 < closest.z ? float3(-uvOffs.xz, coc1) : closest; closest = coc2 < closest.z ? float3(-uvOffs.zy, coc2) : closest; closest = coc3 < closest.z ? float3(+uvOffs.zy, coc3) : closest; closest = coc4 < closest.z ? float3(+uvOffs.xz, coc4) : closest; // Sample the history buffer with the motion vector at the closest point. float2 motion = DOF_TEX2D(_CameraMotionVectorsTexture, i.uv + closest.xy).xy; half cocHis = DOF_TEX2D(_MainTex, i.uv - motion).r; // Neighborhood clamping. half cocMin = closest.z; half cocMax = max(max(max(max(coc0, coc1), coc2), coc3), coc4); cocHis = clamp(cocHis, cocMin, cocMax); // Blend with the history. return lerp(coc0, cocHis, _TaaParams.z); } // Prefilter: downsampling and premultiplying. half4 FragPrefilter(VaryingsDOF i) : SV_Target { #if defined(SEPARATE_TEXTURE_SAMPLER) // Sample source colors. half4 c_r = _MainTex.GatherRed (sampler_MainTex, i.uv); half4 c_g = _MainTex.GatherGreen(sampler_MainTex, i.uv); half4 c_b = _MainTex.GatherBlue (sampler_MainTex, i.uv); half3 c0 = half3(c_r.x, c_g.x, c_b.x); half3 c1 = half3(c_r.y, c_g.y, c_b.y); half3 c2 = half3(c_r.z, c_g.z, c_b.z); half3 c3 = half3(c_r.w, c_g.w, c_b.w); // Sample CoCs. half4 cocs = _CoCTex.Gather(sampler_CoCTex, i.uvAlt) * 2.0 - 1.0; half coc0 = cocs.x; half coc1 = cocs.y; half coc2 = cocs.z; half coc3 = cocs.w; #else float3 duv = _MainTex_TexelSize.xyx * float3(0.5, 0.5, -0.5); // Sample source colors. half3 c0 = DOF_TEX2D(_MainTex, i.uv - duv.xy).rgb; half3 c1 = DOF_TEX2D(_MainTex, i.uv - duv.zy).rgb; half3 c2 = DOF_TEX2D(_MainTex, i.uv + duv.zy).rgb; half3 c3 = DOF_TEX2D(_MainTex, i.uv + duv.xy).rgb; // Sample CoCs. half coc0 = DOF_TEX2D(_CoCTex, i.uvAlt - duv.xy).r * 2.0 - 1.0; half coc1 = DOF_TEX2D(_CoCTex, i.uvAlt - duv.zy).r * 2.0 - 1.0; half coc2 = DOF_TEX2D(_CoCTex, i.uvAlt + duv.zy).r * 2.0 - 1.0; half coc3 = DOF_TEX2D(_CoCTex, i.uvAlt + duv.xy).r * 2.0 - 1.0; #endif // Apply CoC and luma weights to reduce bleeding and flickering. float w0 = abs(coc0) / (Max3(c0) + 1.0); float w1 = abs(coc1) / (Max3(c1) + 1.0); float w2 = abs(coc2) / (Max3(c2) + 1.0); float w3 = abs(coc3) / (Max3(c3) + 1.0); // Weighted average of the color samples half3 avg = c0 * w0 + c1 * w1 + c2 * w2 + c3 * w3; avg /= max(w0 + w1 + w2 + w3, 1e-5); // Select the largest CoC value. half coc_min = Min4(coc0, coc1, coc2, coc3); half coc_max = Max4(coc0, coc1, coc2, coc3); half coc = (-coc_min > coc_max ? coc_min : coc_max) * _MaxCoC; // Premultiply CoC again. avg *= smoothstep(0, _MainTex_TexelSize.y * 2, abs(coc)); #if defined(UNITY_COLORSPACE_GAMMA) avg = GammaToLinearSpace(avg); #endif return half4(avg, coc); } // Bokeh filter with disk-shaped kernels half4 FragBlur(VaryingsDOF i) : SV_Target { half4 samp0 = DOF_TEX2D(_MainTex, i.uv); half4 bgAcc = 0.0; // Background: far field bokeh half4 fgAcc = 0.0; // Foreground: near field bokeh UNITY_LOOP for (int si = 0; si < kSampleCount; si++) { float2 disp = kDiskKernel[si] * _MaxCoC; float dist = length(disp); float2 duv = float2(disp.x * _RcpAspect, disp.y); half4 samp = DOF_TEX2D(_MainTex, i.uv + duv); // BG: Compare CoC of the current sample and the center sample // and select smaller one. half bgCoC = max(min(samp0.a, samp.a), 0.0); // Compare the CoC to the sample distance. // Add a small margin to smooth out. const half margin = _MainTex_TexelSize.y * 2; half bgWeight = saturate((bgCoC - dist + margin) / margin); half fgWeight = saturate((-samp.a - dist + margin) / margin); // Cut influence from focused areas because they're darkened by CoC // premultiplying. This is only needed for near field. fgWeight *= step(_MainTex_TexelSize.y, -samp.a); // Accumulation bgAcc += half4(samp.rgb, 1.0) * bgWeight; fgAcc += half4(samp.rgb, 1.0) * fgWeight; } // Get the weighted average. bgAcc.rgb /= bgAcc.a + (bgAcc.a == 0.0); // zero-div guard fgAcc.rgb /= fgAcc.a + (fgAcc.a == 0.0); // BG: Calculate the alpha value only based on the center CoC. // This is a rather aggressive approximation but provides stable results. bgAcc.a = smoothstep(_MainTex_TexelSize.y, _MainTex_TexelSize.y * 2.0, samp0.a); // FG: Normalize the total of the weights. fgAcc.a *= UNITY_PI / kSampleCount; // Alpha premultiplying half alpha = saturate(fgAcc.a); half3 rgb = lerp(bgAcc.rgb, fgAcc.rgb, alpha); return half4(rgb, alpha); } // Postfilter blur half4 FragPostBlur(VaryingsDOF i) : SV_Target { // 9 tap tent filter with 4 bilinear samples const float4 duv = _MainTex_TexelSize.xyxy * float4(0.5, 0.5, -0.5, 0); half4 acc; acc = DOF_TEX2D(_MainTex, i.uv - duv.xy); acc += DOF_TEX2D(_MainTex, i.uv - duv.zy); acc += DOF_TEX2D(_MainTex, i.uv + duv.zy); acc += DOF_TEX2D(_MainTex, i.uv + duv.xy); return acc / 4.0; } #endif // __DEPTH_OF_FIELD__